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Abstract

The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds.
Different efforts have been made, with compartmental models in epidemiology and statistical models such
as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing
intelligence models. These efforts have proved useful in some instances by allowing decision makers
to distinguish different scenarios during the emergency, but their accuracy has been disappointing,
forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a
simple Multiple Linear Regression model, optimised to use phone call data to forecast the number of
daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to
better deal with risk. Our proposed approach outperforms ARIMA, ETS, Seasonal Naive, Prophet and
a regression model without call data, evaluated by three point forecast error metrics, one prediction
interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability
of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers
at local level who acutely need to organise resources in already strained health services. We hope
that this model would serve as a building block of other forecasting efforts that on the one hand
would help front-line personal and decision makers at local level, and on the other would facilitate the
communication with other modelling efforts being made at the national level to improve the way we
tackle this pandemic and other similar future challenges.

Key words: COVID-19, time series, forecasting, call centers, regression, exponential smoothing,
ARIMA

1. Introduction

Since its discovery at the end of 2019 in Wuhan, China, the spread of coronavirus (SARS-CoV-2)
has shaken one country after another putting governments, infrastructure, local and international
cooperation to the test as it has claimed the lives of more than a million people worldwide (World
Health Organisation 2020) and caused severe disruptions to every-day life and the economy.

The epidemic is evolving with regional and local differences. The way it spreads, as pointed out
by Hamzah et al. (2020), is largely influenced by each country’s policies. Consequently, in the UK,
some of the regional differences might be strongly linked to differences in approaches or policies or their
timing to tackle the epidemic in England, Wales, Scotland and Northern Ireland. Additionally, other
factors, linked to human direct interaction and exposure, such as life conditions (including income,
accommodation, vulnerability), engagement in economic activities with close interaction and mobility
patterns can further create differences in the evolution of the epidemic at regional and local levels.
These complexities are being researched in interdisciplinary areas such as digital epidemiology (Perc et
al. 2020; Salathe et al. 2012).

As the epidemic unfolds, decision makers face the difficulties posed by uneven developments and
model limitations to predict its evolution. Increasing numbers of confirmed cases lead to an increase
in demand for hospital beds, and in the most severe cases also ICU beds. The uneven spread of the
infection, manifested in large variations at local level, render important to monitor its spread and
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attempt to predict the number of new cases. The ability to accurately forecast the number of positive
confirmed cases few weeks in advance, would allow local decision makers to put in place all measures
required to increase capacity in hospital beds to treat COVID-19 patients before it occurs, instead of
reacting to it.

This study has initially been motivated by a real-life forecasting problem faced by a local country
council in the National Health Service (NHS) in England. The problem highlights the lack of a rigorous
method to forecast the number of confirmed cases at ground/local level. Decision makers at the local
level need forecasts to: i) inform general strategy; ii) adjust hospital bed capacity; iii) cancel/postpone
non-urgent hospital operations; iv) redirect available medical resources to COVID-19 wards; and v) plan
for extra capacity in body storage of mortuary services. Additionally, some limitations in the literature
have also motivated the development of our study which are summarised as follows: i) the forecast
accuracy of models is not systematically reported; ii) there are big differences between predictions and
what happened in reality and forecast errors greatly vary; iii) in some studies it is unclear how forecasts
are generated and evaluated, e.g. whether a rolling window is used and what is the forecast horizon;
and iv) most of the studies focus on point forecasts and ignore the uncertainty associated with them,
which may lead to less effective decisions. Despite the limitations of these efforts, the need to have
appropriate tools to aid decision making continues to be pressing and sensible contributions within
forecasting are sought after, as evidenced by the publication, already since early stages of the outbreak,
of comprehensive reviews (Shinde et al. 2020). Frustration with regards to forecast accuracy when
forecasting COVID-19 has also been summarised by Ioannidis, Cripps, and Tanner (2020). A myriad of
reasons has been given, including poor data, lack of incorporation of epidemiological features and lack
of transparency. It is important to note that the communication between decision makers at local and
national levels is also acutely needed and therefore any experience with different forecasting and other
decision tools at local level with a clear assessment of their accuracy will facilitate the integration of
models and communication as the epidemic continues to unfold.

This paper contributes to the literature by developing a probabilistic forecasting approach that
uses phone call data to forecast COVID-19 cases at a local level. Overall, The forecasting approach,
accuracy assessment, and empirical conditions in our present work are additions to the increasing body
of knowledge about foresting this pandemic, and its products (models, assessment and conditions) can
be used as building blocks in broader approaches and frameworks that encompass diverse models. It
is a contribution towards enlarging the set of tools and accuracy assessment, to aid front line health
personnel and managers facing the crisis in taking decisions on resources and operations.

Our contributions are fourfold: (i) we propose a novel forecasting model to accurately forecast daily
COVID-19 confirmed cases; (ii) we examine the use of phone call data and provide evidence of their
usefulness in forecasting daily confirmed cases; (iii) we provide probabilistic forecasts that quantify
uncertainties in future confirmed cases; (iv) we benchmark the accuracy of our model against five
techniques including AutoRegressive Integrated Moving Average, ARIMA (Box et al. 2015), Exponential
Smoothing State Space, ETS (Durbin and Koopman 2012), Seasonal Naive, Snaive (Hyndman and
Athanasopoulos 2020), Prophet (Box et al. 2015) and a regression model without considering call data.

The rest of the paper is organised as follows: Section 2 provides a brief overview of the efforts to
forecast COVID-19, Section 3 starts by analysing data to then introduce the models used in this study
and the forecast performance evaluation scheme and metrics. Section 4 presents the results of the study,
followed by concluding remarks in section 5.

2. Research background: forecasting COVID-19

Forecasting COVID-19 has attracted a lot of attention of researchers and many studies have analysed
various related variables. Some studies focus on the global and national level; others focus on regional
level and few consider the local level. The following is an overview of approaches used to forecast
different variables of COVID-19 to date.

Petropoulos and Makridakis (2020) forecast the cumulative number of daily confirmed cases globally
with exponential smoothing models. Since this early effort, the limitations of the models were clear and
acknowledged by the authors and attributed to strong government interventions and accuracy of data.
Benvenuto et al. (2020) predict the epidemiological trend of incidence and prevalence of COVID-19
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worldwide using ARIMA models. Feroze (2020) use Bayesian Structural Time Series Models (Brodersen
et al. 2015) to forecast the daily total number of positive cases in USA, Brazil, Russia, India and
UK for the next 30 days. Authors report a better performance from their models when compared to
ARIMA models.

At country level, Fong et al. (2020b) proposed a methodology for fitting models with scarce data at
the beginning of the pandemic with data from China. A polynomial neural network with corrective
feedback is found to perform better, according to RMSE (root mean square error), in a panel selection
framework including other polynomial neural networks, ARIMA, Linear Regression, Holt-Winters
models, Support Vector Machines and Fast Decision Tree, among others. In a similar approach, Fong
et al. (2020a) use Monte Carlo simulation to forecast the total daily cost associated to the pandemic by
using scarce data. Two groups of variables, one with time-series data and other with scalar estimates,
are used as inputs, with several models being subject to a panel selection process. In the last stages,
visualisation through fuzzy rules is proposed to enhance decision-making. This article is an attempt
to tackle data scarcity and uncertainties, with the aim of supporting decision making in an exercise
of broad scope. The approach, tested with data COVID-19 data from China, provides, according to
the authors, better qualitative results for decision making than individual forecasting techniques alone.
The approaches in these two articles are first steps towards forecasting frameworks to inform decision
making during pandemics. An interesting next step forward would be to use open source forecasting
tools, to equate the use of open data, in order to promote the construction of such frameworks.

Yousaf et al. (2020) forecast daily confirmed cases with ARIMA models at country level in Pakistan.
Of the same nature is the research by Moftakhar, Mozhgan, and Safe (2020) with data from Iran, in
which observed new cases are used to predict the number of patients. Artificial Neural Networks (ANN)
and Auto-Regressive Integrated Moving Average (ARIMA) are used, with the later showing better
accuracy. ARIMA models are also used by Gupta and Pal (2020) to forecast infection cases in India for
the next 30 days. Harun et al. (2020) forecast the number of COVID-19 cases in Germany, United
Kingdom, France, Italy, Russia, Canada, Japan, and Turkey by using linear and non-linear regression
models, ARIMA and exponential smoothing methods. Different best performing forecasting models are
identified for different countries.

Hazarika and Gupta (2020) and references therein show that the proposal of modified machine
learning models has been very active. The authors propose a hybrid Random Vector Functional link
(RVFL) network and a wavelet-coupled RVFL (WCRVFL) network to forecast the number of infected
people in Brazil, India, Peru, Russia and the USA. Performance is evaluated when forecasting 60 days
ahead, against support vector regression (SVR) models and the conventional RVFL.

Tomar and Gupta (2020) use a long short-term memory (LSTM) recurrent neural network to
forecast daily and total positive cases, total recovered and total deceased in India. A simple curb fitting
with an exponential model is used to assess the effect of a lock-down and social distancing. LSTM
networks were also used with data from Canada by Chimmula and Zhang (2020).

Perc et al. (2020) forecast the number of daily confirmed cases in United States, Slovenia, Iran and
Germany with an iterative model that uses the average growth of cases and takes into account the
recovered and deceased. By devising the model around growth and targeting its use to the short term,
it was rendered helpful even in the absence of a systematic accuracy study.

Logistic models of the SEIRD type, which divide population in groups (Susceptible, Exposed,
Infected, Removed and Dead), and require the solution of a system of differential equations, have
been used abundantly, with different variants, to describe and predict the evolution of the epidemic
globally (Hamzah et al. 2020) and in regions and countries (Martelloni and Martelloni 2020; Fanelli
and Piazza 2020; Mohd and Sulayman 2020; Nabi 2020). Martelloni and Martelloni (2020) apply a
SIRD model to Italy and adapt it to account for the introduction of lock-downs by governments, the
influence of asymptomatic and the absence of a criteria to define the susceptible group. Fanelli and
Piazza (2020) use a SIRD model to explore the temporal dynamics of the epidemic in China, Italy and
France. Sarkar, Khajanchi, and Nieto (2020) adapt the SIRD model to account for asymptomatic,
isolated infected and quarantined susceptible. Mohd and Sulayman (2020) propose a modified logistic
model to account for reinfections, false detection problems and scarcity of medical equipment in the
context of a developing country and found that in such circumstances there can be unstable scenarios
where decisions based on the reproduction number R0 should be made with caution. In some studies
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(Martelloni and Martelloni 2020; Fanelli and Piazza 2020) there are hints of universal characteristics,
whereas in Mohd and Sulayman (2020) the particular circumstances of a developing country suggests
that behaviours of the epidemic might have important country differences.

Sardar et al. (2020) investigate several models covering the mathematical (SIRD) and statistical
types, to study the effect of lock-down in India: a SIRD-type logistic model, expanded further than
Sarkar, Khajanchi, and Nieto (2020) that accommodates for lock-down; an Auto-regressive Integrated
Moving Average (ARIMA) model; an exponential smoothing model with ARMA errors, trend and
seasonal components (TBATS); a hybrid statistical model based on the combination of ARIMA and
TBATS and a weighted combination of the SIRD model and the best statistical one. Daily notified
cases from five states in India and the overall country are used to fit the models, which helped assessing
different scenarios determined by the effective reproduction rate number.

Sophisticated spatio-temporal models have been explored by The Gleam Project (2020), Balcan et
al. (2009) and Balcan et al. (2010) to project infections, deaths and ICU and hospital beds needed
in the US. This and related work (Liu et al. 2020) are signalling the need of complex methods for
some settings. A trend that is also manifested, for example, in the investigation of ARIMA models in
conjunction with spacial relations between neighbouring countries (Hernandez-Matamoros et al. 2020).

The survey by Shinde et al. (2020), focused mostly on research at country level, considers two
categories for data sources (official government or trusted organisations, such as WHO, and social
media) and two groups of models: mathematical/analytical and machine learning/data science. These
classifications continue to be meaningful to-date. It is interesting to notice the way in which phone
data has been used: mobile phone data has been used to collect statistics of movement of people and
data from search engines and newspaper reports has been used to predict the total number of deceased.
The scarcity of research on using data from phone calls to health services persists to-date.

At regional level, Anastassopoulou et al. (2020) propose a methodology to estimate epidemiological
parameters and apply a SIRD model to forecast the number of infections, recovered and deceased in
the region of Hubei, China. After a coarse estimation of parameters, a non-linear optimisation routine
is used to obtain refined estimates. The official figures from the region fell inside the upper and lower
bounds, albeit very wide, that had been produced by authors. Despite the inaccuracy, the lessons
learned in how to calibrate this type of models are very valuable.

Massonnaud, Roux, and Crépey (2020) adapt a SEIR model to formulate scenarios for French
metropolitan regions based on different reproduction rates. The daily number of COVID-19 cases,
hospitalisations and deaths, the needs in ICU beds per region and the reaching date of ICU capacity
limits were estimated. Hospital catchment areas are used and then aggregated by French region.

Weissman et al. (2020) implement a SIR model to plan scenarios (defined by doubling times of
2, 6 and 10 days) in 3 hospitals in greater Philadelphia region, US. Three variables are predicted:
hospital capacity, patients requiring ICU beds and patients requiring ventilators. The accuracy of the
predictions is not reported, but the usefulness of the scenarios in the planning ahead is recognised. This
assessment and the construction of models is facilitated by a close collaboration between operational,
medical and data personnel.

When considering this overview of forecasting efforts, it is clear that accuracy has been disappointing
in many cases. The majority of the studies focus only on point forecasts and ignore the uncertainty
that may lead to less effective decisions. In some cases, the forecast accuracy has not been reported
or it is unclear how it has been evaluated. It is evident the effort in proposing and testing machine
learning, statistical and mathematical models. In the area of machine learning there is a emphasis on
hybridisation to cope with complexity whereas in the area of SIRD models there is an attempt to adapt
them to different circumstances and government interventions. However, limitations of different models
might not be reduced unless connected with other approaches such as spatio-temporal complex models
like Global Epidemic and Mobility Model (GLEAM) (The Gleam Project 2020), and well articulated
to policy making. It is also evident that phone data from official help lines has not been extensively
explored, or at least reported.
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3. Experimental design

3.1. Data
Data used in this paper comprised the number of daily COVID-19 confirmed cases and the number

of daily phone calls received at the National Health Service 111 (NHS 111) at one of the largest
Non-metropolitan country council in the East Midlands region of England between 18 March 2020 and
19 September 2020. Data is publicly available and extracted from the Public Health UK1 and NHS
Digital2, respectively.

Figure 1 illustrates the time plot of the confirmed cases. Although the time series is noisy, some
systematic patterns are visible. The time plot shows a trend and the number of positive cases in the
weekend are lower than the working days. We also analyse the Autocorrelation (ACF) and Partial
Autocoirrelation (PACF) Functions to investigate the link between the number of confirmed cases and
its lagged values. Figure 2 shows the ACF (Figure 2-A) and PACF (Figure 2-B) of the time series. The
ACF plot highlights a trend because by increasing the lag, the value of ACF decreases exponentially.
Additionally, high positive spikes in lag7, 14and21 shows the presence of seasonality. Moreover, PACF
reveals that there are some positive lags that need to be considered in the forecasting model such as
lag1, lag4, lag5, and lag13.
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Figure 1: Time series of daily confirmed cases
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Figure 2: Autocorrelation and Partial Autocorrelation of the time series of confirmed cases

1https://coronavirus.data.gov.uk/
2https://digital.nhs.uk/coronavirus
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Figure 3 presents the time plot of the NHS 111 calls highlighting the presence of a trend. The data
is less noisy and there is no seasonal pattern. NHS 111 call data can be used as a predictor of the
number of daily confirmed cases, therefore, we need to produce its forecast.
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Figure 3: Time series of daily phone calls.

In the relationship between the number of confirmed cases and the number of NHS 111 calls on day
t, the former may be related to past lags of the later. The sample Cross-Correlation Function (CCF)
can be used to identify lags of the number of NHS 111 calls series that might be useful predictors of the
number of confirmed cases. For instance, consider lag = −24, the CCF value will give the correlation
between the number of NHS 111 calls on day t− 24 and the number of confirmed cases on day t.
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Figure 4: Cross-correlation of the past values of NHS 111 calls and the number of confirmed cases.

Figure 4 presents the linear relationship between confirmed cases and NHS 111 lags. It seems
that confirmed cases are relatively high almost 7 − 30 days after high NHS 111 calls (i.e., significant
correlation at lags of 7 to 30). There are a lot of models that we could try based on the CCF, ACF,
PACF and the presence of trend and the effect of weekends for these data. In the next section,
we propose a Multiple Linear Regression model in which the number of confirmed cases, is a linear
combination of (past) lags of the number of NHS 111 calls.

3.2. Proposed model, Multiple Linear Regression with call data (MLR_T)
In this section, we model the number of confirmed cases as potentially a function of past lags of

confirmed cases, current and past lags of the number of NHS 111 calls, the weekend and the trend.
These components allow for possible interpretations as described in section 3.1.
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We denote Yt as the number of positive confirmed cases on day t. The predictors are presented
using the following notations:

• NHS111t: for the number of NHS 111 calls on day t.
• trendt: for the local trend on day t.
• Yt−k: for the number of positive confirmed cases on day t− k.
• NHS111t−k−4: for the NHS 111 calls on day t− k − 4.
• Weekendt: for the weekend dummy; Weekendt is 1 if t falls on a Weekend and 0 otherwise.

Yt = β0 + β1NHS 111t + trendt +
21∑
k=1

βk+1Yt−k︸ ︷︷ ︸
AutoRegressive effect

+
26∑
k=1

β22+kNHS 111t−k−4︸ ︷︷ ︸
NHS 111 lag effect

+Weekendt + εt (1)

The mathematical representation of the proposed model is shown in the Equation (1). We should
note that, to ensure achieving strictly positive values for the number of confirmed cases, we have used
the log() transformation for the response variable, confirmed cases, and its lagged values as predictors.
Specified transformation is automatically back-transformed to produce forecasts.

Not all potential predictors are included in the final forecasting model. After building the model,
we need to select the predictors that are useful in producing accurate forecasts. To that end, we have
conducted a stepwise regression and select predictors that improve the Out-of-Sample forecast accuracy
based on RMSE. Due to the amount of uncertainty in the number of positive confirmed cases, we
produce the estimated probability distribution of the number of positive confirmed cases in future
time periods in addition to the point forecast. This allows us to provide more information about the
forecasts that could be fruitfully used by decision makers.

The proposed model uses the NHS 111 call, its lags and the lagged values of confirmed cases as
predictors, therefore, in order to produce ex-ante forecasts (Hyndman and Athanasopoulos 2020), we
need to generate forecasts of these predictors. Figure 5 depicts the steps of the forecasting process,
implemented in R.

Start

Import data

Fix duplicate
values, if any.

Fix explicit miss-
ing values, if any.

Create time se-
ries using tsibble.

Fix time gaps, if any.

Generate ex-ante forecast
for phone calls for

the forecast horizon.

Create lagged val-
ues of phone calls.

Create lagged values
of confirmed cases.

Replace future lagged
of confimed cases

with their forecast.

Fit the proposed model
to historical data.

Provide the pro-
posed model with
ex-ante forecast.

Forecast using the
proposed model.

End

Figure 5: Steps of the forecasting process.

To forecast NHS 111 calls, we examined ARIMA, ETS and their combination. We use forecasts
generated by ARIMA for NHS 111 calls as it results in more forecast accuracy. For the lagged values of
confirmed cases, we examines Naive (Hyndman and Athanasopoulos 2020), ARIMA, ETS and their
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combinations. Forecasts generated by ETS result in more accurate forecasts overall, however, forecasts
from Naive method were accurate for shorter horizons. Therefore, we replace the forecasts generated
from ETS by those generated from the Naive method when h < 5. We have compared various horizons,
h and this yields in a more accurate forecast of confirmed cases in the Out-of-sample.
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Figure 6: Sample forecast produced by the proposed model.

Figure 6 illustrates an example of the probabilistic forecast generated by the proposed model.

3.3. Benchmarks
We use three different benchmark methods to compare their forecast accuracy with our proposed

model. We consider Exponential smoothing and ARIMA models as the two most widely used approaches
to time series forecasting, in addition to a regression approach without using call data. These benchmark
methods are used to show whether there is any adding value in using the proposed model or not.

3.3.1. Proposed model without call data (MLR_W)
In order to show the impact of incorporating the call data in the modeling and its effect on forecast

accuracy improvement, we use the the same model proposed in section 3.2 without including NHS 111
calls and its lagged variables.

3.3.2. Exponential smoothing state space model (ETS)
The second benchmark is the automatic exponential smoothing (Hyndman and Athanasopoulos

2020) model that is incorporated using corresponding implementation of the fable package in R. We
use the ETS() function in the fable package (O’Hara-Wild et al. 2020) to generate daily forecast of the
confirmed cases.
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3.3.3. AutoRegressive Integrated Moving Average (ARIMA)
The third benchmark model is an automatic ARIMA) model (Hyndman and Athanasopoulos 2020).

The orders of the model and parameters are selected by minimising the AIC (Akaike information
criterion). We use the implementation of automatic ARIMA in fable package; ARIMA() function is
used to generate the forecasts of daily confirmed cases (O’Hara-Wild et al. 2020).

3.3.4. Prophet
Prophet is a forecasting procedure created by Facebook (Taylor and Letham 2018) that accounts

for multiple seasonality, piecewise trend. Prophet works well on daily data, is robust to missing data
and shifts in the trend, and typically handles outliers well. It is popular and automated, making it easy
to learn and use in practice. The model is incorporated using corresponding implementation of the
Fable package in R. We use the prophet() function in the fable package to generate daily forecast of
confirmed cases (O’Hara-Wild et al. 2020).

3.3.5. Seasonal Naive
The Seasonal naive model is a simple method in which each forecast is equal to the last observed

confirmed cases from the same season (e.g. the same day of the week). This method is useful for time
series with seasonality.

3.4. Forecast performance evaluation schemes and metrics
We first split the dataset into training (70%) and test (30%) sets. We apply the forecasting models on

the training set and evaluate the forecast performance of the proposed MLR approach and benchmarks
on the test set. Evaluation is conducted using a rolling origin forecasting study with re-estimation.
Forecasting horizon is chosen to be h = 21 which corresponds to three weeks that allows decision
makers to use forecast to inform decisions on resource allocation and planning in the health service.
We have considered six different forecast accuracy metrics: i) three point forecast error metrics, ii) one
prediction interval accuracy measure, and iii) two probabilistic forecast accuracy metrics.

3.4.1. Point forecast accuracy measures
The point forecasting metrics are the ME (Mean Error), MAE (mean absolute error) and RMSE

(root mean square error) for point forecasts (Hyndman and Koehler 2006). These measures help us to
evaluate the performance of models from different perspectives. ME provides the overall direction of
the error. It reveals whether the produced forecasts on average are too high or too low. MAE is strictly
appropriate for the median, i.e. if the MAE of a model is smaller than others, it produces forecasts
closer to the median of the data than the others. Finally, RMSE is minimised for the optimal mean
forecast. That means a model with the lower value of RMSE produces more accurate mean values
comparing to others. We evaluate the ME, MAE and RMSE for each model and each forecasting step
and separately. We also report the overall performance of each model across all horizons. A model
with an error measure closer to zero is better.

3.4.2. Prediction interval accuracy measures
An appropriate prediction interval accuracy measure should account for both the coverage and the

width of the prediction interval. Winkler (1972) proposed a measure to calculate the accuracy of the
forecast prediction interval for any given model.

If yt is the observation at time t and [lt, ut] represents the 100(1 − α)%) prediction interval at time
t, then the score for each period is:

W (lt, ut, yt) =


ut − lt if lt < yt < ut

(ut − lt) + 2
α (lt − yt) if yt < lt

(ut − lt) + 2
α (yt − ut) if yt > ut

(2)

The Winkler score is the average of scores across all periods. We prefer a model that has a narrow
prediction interval with high coverage, therefore a model with smaller score is better. In this study,
Winkler score is calculated based on 95% prediction intervals.
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3.4.3. Probabilistic accuracy measures
In addition to the point and prediction interval accuracy measures, we also report two probabilistic

forecasting measures: i) Percentile score and , ii) Continuous Ranked Probability Score (CRPS).
The percentile score is a strictly appropriate evaluation criterion for quantiles. The evaluation is

performed on a dense probability grid for all percentiles (1%, . . . , 99%) (Hong et al. 2016). For each
time period t, we obtain the quantile, qi,t, where i = 1, 2, . . . , 99. Then, the percentile score is given by
the pinball loss function at each period t:

L(qi,t, yt) =
{

(1 − i/100)(qi,t − yt) yt < qi,t

(i/100)(yt − qi,t) yt ≥ qi,t.
(3)

The score can then be calculated for each forecast horizon and across all percentiles. We also report
the overall percentile score across all horizons. If the observations does not deviate from the forecast
distribution, then the average score is small. A model with smaller percentile score is better. CRPS
summaries the quality of a continuous probability forecast with a single score by measuring the distance
between the forecast and the observed cumulative Distribution Function. It reveals how closely the
CDF of the forecast matches that of the corresponding observations.

We should note that in order to report the result of the performance evaluation using time series
cross validation, we have averaged the score of each measure computed for different rolling origins.

4. Result and discussion

In this section, we present the forecast accuracy of our proposed MLR model and its benchmarks
for point forecast, prediction interval and probabilistic forecasts using Out-of-sample data using time
series cross validation approach.

Table 1 presents the overall performance of forecasting models for three types of forecast accuracy
measures: i) point error measures using Me, RMSE, MAE; ii) prediction interval accuracy measure
using Winkler score, and iii) probabilistic accuracy measures using Percentile and CRPS. The reported
scores are averaged across all rolling origins and forecast horizons. Overall, the proposed MLR model
clearly outperforms benchmarks for all forecast accuracy measures.

We first observe the performance of forecasting models using the point forecast accuracy measures
(columns 2-4). ME shows the forecast bias of considered models which is the tenancy of a forecast to
be consistently higher or lower than actual values. Given that ME is positive for all models, generated
forecasts are positively biased manning that all forecasting models are overestimating the daily number
of confirmed cases on average. The MLRT model has the lowest bias comparing to all benchmarks.
Decision makers should consider this when making decisions based on the forecasts.

RMSE is the squared root of MSE which is minimised by mean. If the decision maker is interested in
producing the expected average of the daily confirmed cases, and then identify which model outperforms
benchmarks in terms of the expected values, then RMSE measure is an appropriate indicator. Table 1
indicates that MLRT outperforms benchmarks based on RMSE.

MAE accuracy measure is another indicator that is useful to evaluate the point forecast accuracy
which is minimised by median. That means, if the decision maker is interested in identifying which
forecasting model generates more accurate forecast of daily confirmed cases in terms of median values,
then MAE should be used. Results indicate that MLRT model outperforms others based on MAE.

In addition to point forecast accuracy, we believe that the forecast should acknowledge the uncertainty
of the future confirmed cases and it should be an integral part of the decision-making process. The
report of uncertainty allows for a more informed decision and better risk management strategy. We
first report forecast uncertainty using a winkler (column 4). Results shows that the proposed model has
the lowest Winkler score, which means on average it has more accurate coverage and narrower intervals
than all benchmarks.

Most importantly, we provide the accuracy of the probability forecast distribution that contains
all forecast properties including mean, median, prediction intervals and quantiles This evaluates how
well the forecast distribution is capturing the structure of the data. Results indicate that the MLRT
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Table 1: Forecast performance evaluation

Accuracy measture
Model ME RMSE MAE Winkler Percentile CRPS
Prophet 154.42 275.13 155.37 4465.83 73.10 145.61
SNaive 146.41 273.67 153.87 2628.72 69.14 137.07
ETS 148.89 271.99 153.28 3548.38 70.43 139.93
ARIMA 134.99 259.98 144.84 2942.25 65.34 129.72
MLR_W 117.52 222.59 124.30 2295.61 54.76 108.73
MLR_T 86.70 178.06 97.00 583.25 39.71 78.72

model provides more accurate probability forecast distribution that others, which means it can inform
decisions more accurately about uncertainty than others.

In addition to the overall performance, we have also analysed the performance of each forecasting
model across various forecast horizons. Figure 7 illustrates the point forecast accuracy metrics for
each forecast horizon. While for shorter horizons, the performance of models are closer, there is a
substantial gain in longer horizons using our proposed approach. For longer forecasting horizons, the
proposed model retains high forecasting accuracy compared to other methods. Clearly, the proposed
model not only remains accurate across the forecasting horizon, but is also more robust than other
methods against increasing horizons.

Figure 8 presents measures of the uncertainty of the models used in this study. Figure (8-A) shows
the Winkler score for the 95% prediction intervals for each horizon. The proposed model provides more
accurate prediction interval forecasts for all horizons and there is a substantial gain in using our model
as forecast horizon increases. All benchmarks provide either more wider intervals and/or fail to cover
the actual values inside the prediction interval.

In evaluating the probabilistic forecast accuracy of our model and its benchmark, we focus on the
distributional characteristics of the generated forecasts evaluated by the corresponding percentile score
and CRPS. Figure (8-B and C) presents the corresponding percentile score and CRPS aggregated for
each forecasting horizon. The results show that the proposed model captures the density structure for
consistently across all horizons better than the benchmark models. The difference is substantial for
longer forecast horizons.

Figure 7 and Figure 8 indicate that the forecast accuracy of all models deteriorate as forecast horizon
increases. Therefore, the further into the future a forecast is required, the forecast error becomes larger
for all models.
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Our results show that the proposed model not only outperforms benchmarks in terms of generating
the correct value of future confirmed cases, but is also the most accurate when providing consistent
information about uncertainty around confirmed cases. The model is very simple and can be understood
by any manager, it also provides the entire probability distribution for confirmed cases for a given day
at the local level. Our model offers the ability to capture a range of possibilities regarding confirmed
cases for any given day that is not contained in the point forecasts. This is very important for decision
makers and planners in healthcare, as it helps them to assess the risk and make better decisions in
planning. Further research attempts are required on how to use probabilistic forecasts and interpret
output to inform decisions in the healthcare.

We should note that, if the focus of the decision makes is more on the short-term horizons (h < 7),
then it is possible to create a MLR based model using the principles discussed in this paper that
outperforms benchmarks substantially.
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5. Conclusion

An accurate forecast of the daily number of positive confirmed cases is crucial for resource planning.
Many models have been proposed in the literature to forecast confirmed cases ranging from time series
to epidemic forecasting models.

In this study, we have created a simple and interpretable forecasting model that can be used to
forecast positive confirmed cases at the local level. The proposed MLR model exploits the relationship
between the confirmed case and the phone call data (NHS 111 calls), in addition to other patterns
such as trend, the effect of weekends and Autoregressive lags of confirmed cases. We compare the
performance of the model with ETS, ARIMA, Seasonal Naive, Prophet and a MLR model without
using phone call data using an empirical study.

These models are applied to the number of confirmed cases for a country council in England. In
evaluating the performance of generated forecasts, we have used three point forecast error measures,
one prediction interval accuracy measure and two probabilistic forecasting accuracy measures. Our
analysis showed that the proposed model can provide accurate and reliable forecasts. It outperforms all
benchmarks based on all accuracy measures considered in the study. We also provide evidence that
using phone call data is an important predictor of COVID-19 confirmed cases and should be considered
in forecasting models. We could propose that this might be due to the connection between phone
calls to the health service and the dynamics related to COVID-19. The factors associated to being
affected by the virus are clearly social, including deprivation, underlying conditions and belonging
to ethnic minorities (Baumer et al. 2020; Caul 2020), and these factors are complex, dynamically
entangled with mobility, economic activity, lock-downs and other government interventions. Phone
calls to a centralised health service, such as the NHS, serve as an information junction where the chains
of causality, related to social factors, are manifested. The effect of this source of information, renders
possible the interesting performance of a relatively simple model.

In addition to generating traditional point forecasts, we also provide the probabilistic forecasts.
Given the uncertainty involved in forecasting the number of COVID-19 confirmed cases, this is extremely
important for decision makers as it highlights the uncertainty around a single value forecast. It can be
used to manage risk in allocating resources in hospitals.

We have also used the proposed model to forecast the number of confirmed cases at the national level,
England. The overall performance is very similar to the local level, the proposed model outperforms
others. However, we have not provided the analysis here due to the space limit and the focus of the
study at the local level, but it can be provided on request.

One of the limitations of this study is the access to more granular data such as age group, minority
group, health condition, local regulations, knockdown, duration of knockdown, and so on. These might
allow for a better explanation of changes in the number of confirmed cases. Further improvements of
the proposed model can be achieved by incorporating additional information. Another limitation of
the study is that the dataset does not contain hospital information such as COVID-19 admission and
bed occupancy. This information allows for translating the forecast of COVID-19 confirmed cases into
hospital admissions and bed capacity. This could be considered as an important research avenue.
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