

42nd International Symposium on Forecasting

Revisiting Forecasting for Emergency Department Staffing

Bahman Rostami-Tabar¹, Shixuan Wang², and Stephen Disney³

¹Cardiff Business School, Cardiff University ²Department of Economics, University of Reading ³University of Exeter Business School

July 11th 2022, Oxford, UK

What do we do?

We develop a model to generate categorical forecasts that corresponds to the staff-to-patients ratio requirements.

We compare the forecast accuracy of the proposed model using against benchmarks such as Naïve, Exponential Smoothing, ARIMA, TBATS & Random Forest.

We provide recommendations for staffing based on newsvendor model.

 \cap

Outline

- Staffing & Forecasting in Emergency Departments
- Data
- Forecasting model
- Forecast evaluation
- Beyond forecast accuracy newsvendor problem

Workflow in Emergency Departments

Original Data

One hospital in Cardiff

Every patients' arrival time

Period: April 2014 – February 2019

We aggregate the **number of patients** in three shifts of each day.

Shift 1: 0:00 – 8:00 Shift 2: 8:00 – 16:00 Shift 3: 16:00 – 24:00

	Shift 1	Shift 2	Shift 3	All
Mean	45.08	168.06	146.26	119.80
SD	9.08	24.78	18.07	56.68
Skewness	0.46	0.82	-0.07	-0.33
Kurtosis	3.55	4.44	3.68	1.75
JB test	84.62	351.91	35.50	437.96
p-value	0.00	0.00	0.00	0.00
Min	12	81	63	12
25%-Q	39	151.75	134	51
Median	45	165	146	141
75%-Q	51	180	158	162
Max	87	277	214	277

Revisiting Forecasting for Emergency Department Staffing

Time Series Plot of Each Shift

- Mon - Tue - Wed - Thu - Fri - Sat - Sun

Distribution of Three Shifts in Each Day-of-Week

Staff-to-Patient Ratios

Minimum Staffing Requirements in Pennsylvania Hospital Patient Protection Act*

PA House Bill 1500 • Senate Bill 214

Why Categorical Forecast, rather than Point Forecast?

- The ultimate purpose of this study which is to support the planning of the emergency department.
- The planning is not going to change within a specific range.
- We convert the numerical number of patients into the following fix categories:

Methodology: Ordinal Regression

The ordinal regression is formulated in the following equation

$$\ln\left(\frac{P(y_t \le k)}{1 - P(y_t \le k)}\right) = \alpha_{0,k} + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \dots + \beta_p x_{p,t} + \varepsilon_t$$

where y_t is the dependent variable that belongs to one of the *K* categories, i.e. $y_i \in \{1, 2, ..., K\}$; $x_{1,t}, ..., x_{p,t}$ are predictor variables; $\beta_{0,k}, ..., \beta_p$ are unknown parameters to be estimated; ε_i is the error term.

LHS: the **log of the odds** that an event occurs.

RHS: the linear combination of the explanatory variables.

Choice of predictor variables: Four groups

Predictor Variables

- *shift*: Shift 1, Shift 2, or Shift 3.
- *trend*_t: a linear trend.
- $month_t$: calendar month.
- day_t : day of week.
- *isPubHol*_t: whether it is a public holiday
- *isSchHol*_t: whether it is a school holiday
- *isCelDay*_t: whether it is a celebration day
- *HolName*_t: specific holiday (e.g. Good Friday, Easter Monday, etc).
- *isRugCar_t*: Six Nations playing in Cardiff
- *isRugOut_t*: Six Nations playing in other countries
- $h_{i,t-3}$: the one day lag of the holiday variables
- $h_{i,t+3}$: the one day lead of the holiday variables
- $y_{t-3:t-90}$: the lagged dependent variables
- $shift_t \times h_{i,t}$, $shift_t \times h_{i,t-3}$, $shift_t \times h_{i,t+3}$: interaction terms of $shift_t$ and holiday variables (with their lag and lead).

Ordinal logit model with holiday, lag, and lead effects (OLM-HLL)

$$\begin{split} \ln\left(\frac{\mathbb{P}(y_t \leqslant k)}{1 - \mathbb{P}(y_t \leqslant k)}\right) &= \alpha_{0,k} + \beta_1 shift_t + \beta_2 trend_t + \beta_3 month_t + \beta_4 day_t \\ &+ \sum_{i=1}^6 \gamma_i h_{i,t} + \sum_{i=1}^6 \phi_i h_{i,t-3} + \sum_{i=1}^6 \theta_i h_{i,t+3} + \sum_{i=3}^{90} \rho_i y_{t-i} \\ &+ \sum_{i=1}^6 \omega_i (shift_t \times h_{i,t}) + \sum_{i=1}^6 \kappa_i (shift_t \times h_{i,t-3}) \\ &+ \sum_{i=1}^6 \delta_i (shift_t \times h_{i,t+3}) + \varepsilon_t \end{split}$$

Revisiting Forecasting for Emergency Department Staffing

Methodology: LASSO (Tibshirani, 1996)

- LASSO: least absolute shrinkage and selection operator
- The objective function of LASSO has the penalized (negative) log-likelihood: M_λ(β) = -¹/_N ∑^N_{i=1} ln P(Y = y_i | X_i, β) + λ ∑^P_{j=1} |β_j| where λ is the tuning parameter which controls the level of penalization.
 The parameters are estimated by minimize the objective function β = arg min M_λ(β)
 - Due to the penalization, many parameters tend to be zero, which automatically performs variable selections.
 - Results in a sparse statistical model which only has a small number of nonzero parameters.
 - It represents a classic case of "less is more": a 'sparse' model can be much easier to estimate and interpret than a 'dense' model.

Benchmarks

Seasonal naïve model

ETS

ARIMA

TBATS

Random Forecasts

Forecasting Experiment Design

Probabilistic Forecast Output

Shift	(0,50]	(50,100]	(100,150]	(150,200]	(200,250]	(250,300]
1	0.00%	5.40%	72.10%	22.40%	0.10%	0.00%
2	73.40%	26.50%	0.10%	0.00%	0.00%	0.00%
3	0.00%	1.30%	54.30%	43.80%	0.60%	0.00%
4	0.00%	1.00%	50.80%	47.30%	0.80%	0.00%
5	42.20%	56.30%	1.50%	0.00%	0.00%	0.00%
6	0.00%	0.00%	8.60%	75.30%	16.00%	0.00%
7	0.00%	0.40%	36.70%	60.80%	2.10%	0.00%
8	49.50%	49.50%	0.90%	0.00%	0.00%	0.00%
9	0.00%	0.00%	0.00%	6.60%	73.70%	19.70%

Forecasting Evaluation

• Brier Score (Brier, 1950) – the lower, the better!

$$BS = \frac{1}{K} \sum_{k=1}^{K} (\hat{f}_k - o_k)^2$$

• Ranked Probability Score (Epstein, 1969) - the lower, the better!

$$RPS = \frac{1}{K-1} \sum_{k=1}^{K} \left(\sum_{s=1}^{k} \hat{f}_{k} - \sum_{s=1}^{k} o_{k} \right)$$

where *K* is the number of possible categories, \hat{f}_k and o_k are the forecasted probability and actual outcome for category j of observation i.

Forecasting Performance (interval = 50)

Brier Score											
	LASSO	Naive	ARIMA	ETS	TBATS	RF					
h=3	0.196	0.275	0.228	0.233	0.208	0.210					
h=21	0.197	0.294	0.233	0.235	0.222	0.211					
h=84	0.203	0.338	0.241	0.243	0.274	0.218					
h=126	0.200	0.349	0.244	0.247	0.311	0.223					
	Ranked Probability Score										
	LASSO	Naive	ARIMA	ETS	TBATS	RF					
h=3	0.040	0.061	0.048	0.049	0.042	0.045					
h=21	0.041	0.070	0.049	0.049	0.046	0.045					
h=84	0.042	0.093	0.051	0.052	0.065	0.047					
h=126	0.041	0.101	0.052	0.053	0.080	0.048					

Note: Lower BS and RPS are better

Forecasting Performance – Other Interval Setting

	Brier Score						Ranked Probability Score						
	LASSO	Naïve	ARIMA	ETS	TBATS	RF		LASSO	Naïve	ARIMA	ETS	TBATS	RF
					Ι	nterval of	40						
h=3	0.210	0.283	0.228	0.233	0.222	0.228		0.038	0.057	0.042	0.043	0.039	0.043
h=21	0.210	0.310	0.233	0.235	0.234	0.228		0.038	0.065	0.043	0.044	0.043	0.043
h=84	0.212	0.362	0.242	0.242	0.293	0.233		0.038	0.088	0.045	0.046	0.063	0.044
h=126	0.214	0.373	0.245	0.244	0.329	0.238		0.039	0.096	0.046	0.047	0.078	0.045
					Ι	nterval of	30	1					
h=3	0.224	0.309	0.252	0.241	0.230	0.230		0.030	0.047	0.034	0.034	0.030	0.033
h=21	0.224	0.352	0.258	0.243	0.242	0.231		0.030	0.057	0.035	0.034	0.033	0.033
h=84	0.223	0.393	0.268	0.249	0.294	0.235		0.029	0.079	0.037	0.036	0.051	0.034
h=126	0.225	0.403	0.271	0.251	0.332	0.238		0.029	0.087	0.038	0.037	0.065	0.035
Interval of 20													
h=3	0.310	0.372	0.329	0.324	0.315	0.512		0.035	0.050	0.037	0.037	0.034	0.080
h=21	0.308	0.399	0.333	0.326	0.325	0.515		0.035	0.060	0.038	0.038	0.037	0.083
h=84	0.311	0.428	0.340	0.330	0.369	0.523		0.034	0.083	0.040	0.040	0.056	0.090
h=126	0.308	0.434	0.343	0.332	0.398	0.527		0.034	0.090	0.041	0.041	0.070	0.092

Insights for Operational Management for Emergency Departments

- Underage in emergency departments: shortage of staffs can cause long waiting, delayed treatment, etc.
- Coverage in emergency departments: surplus of staffs is a waste of recourses.
- The optimal staffing can be determined by Newsvendor model:
 - A decision variable (Q)
 - Uncertain demand (D)
 - Unit underage cost (c_u)
 - Unit overage cost (c_o)

Optimal Staffing based on Newsvendor Model

The optimal staff quantity for the emergency department can be found by finding the smallest Q such that

$$F(Q) = \sum_{D=0}^{q} p(D) \ge \frac{c_u}{c_u + c_o}$$

where the quantity

$$R = \frac{c_u}{c_u + c_o}$$

is the critical <u>fractile</u>.

Cost Calculation (h=21, 1-week)

Fractile	<i>c</i> _u	Co	LASSO	Naïve	ETS	12000.0
0.1	0.56	5	488.3	889.4	561.1	10000.0
0.2	1.25	5	908.8	1511.3	965.0	10000.0
0.3	2.14	5	1350.7	2137.1	1476.4	8000.0
0.4	3.33	5	1705.0	3331.7	2075.0	6000.0
0.5	5.00	5	2220.0	4415.0	2785.0	4000.0
0.6	7.50	5	2870.0	4682.5	3962.5	2000.0
0.7	11.67	5	3545.0	5158.3	4723.3	0.0
0.8	20.00	5	4390.0	7265.0	5735.0	0.0
0.9	45.00	5	5615.0	10335.0	6205.0	

Sensitivity analysis by different fractile

Summary

We develop a categorical forecasting framework for emergency departments.

We consider a large number of predictor variables, coupled with suitable variable selection techniques, LASSO.

The forecasting performance of our model is superior to five benchmarks.

The staffing decision based on newsvendor model and LASSO can potentially help to save costs for emergency departments.

F4SG Research Grant - \$5,000

The grant can be used for:

• Research capability building in developing countries.

• Collaborative research activity on forecasting for social good leading to publications in top journals such as *International Journal of Forecasting*.

• Promote the use of forecasting for social good in practice.

Lead applicant must be a researcher based on a low or lower-middle income country located in one of the following regions:

- Sub-Saharan Africa
- Latin America & Caribbean
- South Asia
- Middle East & North Africa

• Important dates

Application submission deadline: 31 Oct 2022 For any queries, please contact <u>Dr. Rostami-Tabar</u> (<u>Rostami-tabarb@cardiff.ac.uk</u>) or Dr. Shixuan Wang (<u>shixuan.wang@reading.ac.uk</u>).

• More information can be found via: <u>https://forecasters.org/programs/research-awards/forecasting-for-</u>social-good-research-grant/

